Pre-Calculus Exam (Year 112)

- Any device with a computer algebra system is prohibited during the exam.
- There are two sections in this exam. Please read the respective instruction very carefully.

Section A. (60%)

Instruction : For each question in this section, there is only ONE correct answer. Each correct answer is worth 3%.

- 1. f(x) is a one-to-one function with domain (0,1) and range $(-\infty,\infty)$. Which of the following statements is <u>false</u>?
 - (A) f(x) has an inverse function $f^{-1}(x)$ whose domain is $(-\infty, \infty)$.
 - (B) We can define f(g(x)) for all $x \in (-\infty, \infty)$ where $g(x) = \frac{1}{1+x^2}$.
 - (C) $f(f^{-1}(x)) = x$ for all $x \in (-\infty, \infty)$.
 - (D) $f^{-1}(f(x)) = x$ for all $x \in (-\infty, \infty)$.
 - (E) We can define $f^{-1}(f^{-1}(x))$ for all $x \in (-\infty, \infty)$.
- 2. Suppose that f(x) is a function defined on [-3,3]. Which of the following statements is always true?
 - (A) f(x) f(-x) is an even function defined on [-3,3].
 - (B) f(x) + f(-x) is an odd function defined on [-3,3].
 - (C) If f(x) is an even function, then f(x) has no inverse function.
 - (D) If f(x) is an odd function, then f(x) has no inverse function.
 - (E) None of the above.
- 3. The graph of f(x) is shifted to the right by 2 units and reflected with respect to the line y = 3. The resulting graph has equation:
 - (A) y = 6 f(x 2)
 - (B) y = 3 + f(x 2)
 - (C) y = 6 f(x+2)
 - (D) y = 3 + f(x+2)
 - (E) None of the above.
- 4. Which one of the following equations could possibly have the graph given below?

- 5. For what value of k would the equation $x^2 + 3x + 4 = kx$ have two distinct real solutions?
 - (A) -1
 - (B) 3
 - (C) 5
 - (D) 7
 - (E) 9

6. The maximum value M of the function $f(x) = 4 - x^2 - 6x + 2kx$ occurs at $x = x_0$. Find x_0 and M.

- (A) $x_0 = 3 k, M = 4 (3 k)^2$ (B) $x_0 = k - 3, M = 4 - (3 - k)^2$
- (C) $x_0 = 2k 3, M = 4 + (3 2k)^2$
- (D) $x_0 = 3 2k, M = 4 + (3 + 2k)^2$
- (E) $x_0 = k 3, M = 4 + (3 k)^2$
- 7. The graph of the function

$$f(x) = \frac{ax(x-3)^b}{(x+1)^c(x-5)}$$

is given as below. Find the possible constants a, b, c.

- (A) a = 1, b = 2, c = 2
- (B) a = 5, b = 2, c = 2
- (C) a = 10, b = 3, c = 3
- (D) a = 5, b = 4, c = 2
- (E) a = 5, b = 3, c = 3

8. Which of the following statements is true about the polynomial $f(x) = x^6 + x^2 + 1$?

- (A) Because $f(x) \neq 0$ for all $x \in \mathbb{R}$, f(x) is irreducible.
- (B) Because $f(x) \neq 0$ for all $x \in \mathbb{R}$, f(x) has no complex root.
- (C) Because $f(x) \neq 0$ for all $x \in \mathbb{R}$, f(x) has no linear factor with real coefficients.
- (D) f(x) has no quadratic factors.
- (E) $x^2 + 1$ is a factor of f(x).

- 9. Consider $f(x) = 3 \sqrt{-x^2 + x}$. Which of the following statements is true?
 - (A) f(x) is not defined for all $x \in \mathbb{R}$.
 - (B) The graph of f(x) is a circle centered at $\left(\frac{1}{2},3\right)$.
 - (C) The graph of f(x) is a left half circle with radius $\frac{1}{4}$.
 - (D) The graph of f(x) is a lower half circle with radius $\frac{1}{2}$.
 - (E) None of the above.

10. Find the interval of values of x that satisfies the inequality $\frac{x}{x+2} \ge 3$.

- (A) $x \in [-3, -2)$
- (B) $x \in (-\infty, -3]$
- (C) $x \in [-3, \infty)$
- (D) $x \in (2, \infty)$
- (E) None of the above.

11. Suppose $0 \le x < 2\pi$. How many solutions does the equation $7\sin x + 2\cos^2 x = 5$ have ?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

12. Which of the following numbers is the *smallest* ?

(A) $\ln 2$ (B) $\sqrt{\ln(2^2)}$ (C) 1 (D) $\left(\frac{1}{\ln 2}\right)^3$ (E) $\frac{1}{\ln \sqrt{2}}$

13. Find the value of $\sin \frac{3\pi}{4} + \cos \frac{\pi}{4} + \tan \frac{5\pi}{4} + \cot \frac{7\pi}{4}$.

- (A) $2 + \sqrt{2}$
- (B) $\sqrt{2}$
- (C) $\sqrt{2} 2$
- (D) 2
- (E) None of the above

14. If $\cos(x) = \frac{3}{5}$, then the value of $\cos(2x)$ is (A) $\frac{18}{25}$ (B) $\frac{7}{25}$ (C) $-\frac{7}{25}$ (D) $-\frac{18}{25}$ (E) not determined uniquely, depending on the value of x. 15. Which of the following equations correctly describes a relation between the lengths p, q, r and the angles A, B, C of the following triangle ?

(A)
$$\frac{\sin A}{p} = \frac{\sin B}{q} = \frac{\sin C}{r}$$

(B)
$$\frac{\sin B}{r} = \frac{\sin C}{p} = \frac{\sin A}{q}$$

(C)
$$\cos(B) = \frac{p^2 + q^2 - r^2}{2pq}$$

(D)
$$\cos(C) = \frac{p^2 + r^2 - q^2}{2pr}$$

(E) None of the above.

16. Let $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle$. Simplify the expression

$$(((\mathbf{i} \times \mathbf{j}) \times \mathbf{j}) \times \mathbf{j}) \cdot (\mathbf{i} + 2\mathbf{j} + 7\mathbf{k})$$

- (A) $\langle 0, 0, -7 \rangle$
- (B) $\langle 0, 0, 0 \rangle$
- (C) -7
- (D) 0
- (E) 7
- 17. Consider four points P = (1, 1, 0), Q = (2, 0, 3), R = (0, 2, 5), S = (-1, 3, 2). Determine which of the following statement is correct.
 - (A) $\overrightarrow{PQ} = \overrightarrow{PR} + \overrightarrow{PS}$
 - (B) \overrightarrow{PQ} is perpendicular to \overrightarrow{RS}
 - (C) \overrightarrow{PR} is parallel to \overrightarrow{QS}
 - (D) PQRS is a parallelogram (平行四邊形).
 - (E) None of the above.
- 18. Consider the vectors $\vec{u} = \langle 1, 1, 1 \rangle$ and $\vec{v} = \langle -1, 2, 1 \rangle$. Let α be the acute angle between \vec{u} and \vec{v} . Find the value of $\cos(\alpha)$.

(A) $\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{1}{3}$ (D) $\frac{1}{\sqrt{2}}$

(E) None of the above.

19. Find the coefficient (係數) of x^7 of the polynomial $f(x) = \sum_{k=3}^{15} (-1)^k \frac{x^{k-2}}{(4k-1)}$.

- (A) $-\frac{1}{27}$
- (B) $\frac{1}{31}$
- (C) $-\frac{1}{35}$
- (D) $\frac{1}{39}$
- (E) None of the above.

20. Find the sum
$$\sum_{n=15}^{150} (4n+1)$$
.

- (A) 16054
- (B) 45016
- (C) 56014
- (D) 60145
- (E) None of the above

Section B. (40%)

Instruction : For each question in this section, choose all correct answers. For each question,

- if you make no mistakes in your choices, you get 4%;
- if you make one mistake in your choices, you get 3%;
- if you make two mistakes in your choices, you get 2%;
- if you make more than two mistakes in your choices, you get 0%;
- 21. Let $f(x) = \log_4(8x + 2)$. Determine which of the following statements is/are correct.

(A) The domain of
$$f(x)$$
 is $\left(-\frac{1}{4},\infty\right)$.
(B) $f(x) = \frac{1}{2}\left[3 + \log_2\left(x + \frac{1}{4}\right)\right]$.

- (C) The graph of f(x) is obtained by shifting the graph of $\log_2 x$ to the right by $\frac{1}{4}$ units and then shifting upward by $\frac{3}{2}$ units.
- (D) The inverse function of f(x) is $f^{-1}(x) = \frac{1}{8}(4^x 2)$.
- (E) $f(x) \ge \log_2 x$ has no real solutions.

22. In which of the following intervals do we have

$$\frac{2(x^2+1)^2 - 5x(x^2+1)}{x^2(3-x)} \ge 0 ?$$

- (A) $(-\infty, 0)$
- (B) $\left(0, \frac{1}{2}\right)$
- (C) $\left(\frac{1}{2}, 2\right)$
- (D) (2,3)
- (E) $(3,\infty)$

$$x^{2} + x + 1 \le \frac{5x^{2} - 6x - 1}{x - 1}$$
?

- (A) (-3, -2)
- (B) (0,2)
- (C) (2,3)
- (D) (3,4)
- (E) $\left(\frac{1}{2}, 1\right)$

(E)
$$\left(\frac{-}{2}, 1\right)$$

24. Let f(x) = |x-3| and $g(x) = \sqrt{4x^2 - 4x + 1}$. Which of the following statements is/are correct?

- (A) f(g(x)) is defined for all $x \in \mathbb{R}$.
- (B) f(g(x)) = g(f(x)) for all $x \in \mathbb{R}$.
- (C) f(g(x)) = 2x 4 for x > 2.
- (D) f(g(x)) = 4 2x for x < 2.
- (E) f(g(x)) = 2 + 2x for $-1 \le x \le 0$.
- 25. There are two statements about a real number x:

P:
$$\frac{x^2 - 1}{x + 2} < 0$$
,
Q: $\frac{x}{1 - x} > a$.

Assume that Q implies P. Choose possible values of a.

- (A) a = 2
- (B) a = 1
- (C) a = 0
- (D) $a = -\frac{1}{3}$
- (E) a = -1
- 26. The picture below shows the unit circle, where each point has coordinates $(\cos x, \sin x)$ for some angle x. Determine among which of the following ranges do we have $\sin x < \cos x$.

27. Determine which of the following are solutions to the equation

 $4\sin^3 x - 8\sin^2 x - \sin x + 2 = 0.$

- (A) $\frac{\pi}{6}$
- (B) $\frac{3\pi}{4}$
- (C) $\frac{5\pi}{6}$
- (D) $\frac{7\pi}{4}$
- (E) $\frac{11\pi}{6}$

28. Determine which of the following statements is/are correct.

- (A) The planes x + 2y + 3z = 5 and x 2y + z = 5 are perpendicular to each other.
- (B) The vector $\mathbf{v} = \langle 1, 2, 3 \rangle$ is perpendicular to the plane x 2y + z = 5.
- (C) The equation of the tangent line to $y = e^x$ at (0, 1) is y x = 1.
- (D) If a > 1, the function $f(x) = a^x$ has an inverse function.
- (E) If 0 < a < 1, the function $f(x) = a^x$ has an inverse function.

29. Determine which of the following statements is/are correct.

- (A) For any a, b > 0, we have $\ln(\sqrt{a+b}) = \frac{1}{2} (\ln a + \ln b)$.
- (B) The domain of $f(x) = \ln(x^2 2x + 2)$ is \mathbb{R} (all real numbers).
- (C) The range of $f(x) = \ln(x^2 2x + 2)$ is \mathbb{R} (all real numbers).
- (D) $\log_2(3) \cdot \log_5(2) = \log_5(3)$.
- (E) The equation $\ln(x) \ln(3x+1) = 1$ has no real solutions.
- 30. A sequence $\{a_k\}_{k=0}^{\infty}$ is defined by $a_0 = p$ and $a_k = (a_{k-1})^2$ for k > 0, with $0 . The sequence <math>\{b_k\}_{k=0}^{\infty}$ is defined by $b_k = \ln(a_k)$. Determine which of the following statements is/are correct.
 - (A) $\{\sqrt{a_k}\}_{k=0}^{\infty}$ is a geometric sequence.
 - (B) $b_k \ge 0$ for every $k \ge 0$.
 - (C) $\{|b_k|\}_{k=0}^{\infty}$ is an arithmetic sequence.
 - (D) $\{b_k\}_{k=0}^{\infty}$ is a geometric sequence.
 - (E) $\sum_{k=0}^{n} b_k = (2^{n+1} 1) \cdot \ln(p).$